Large Language Models Are Human-
Level Prompt Engineers

Abstract

By conditioning on natural language instructions, large language models (LLMs) have displayed
impressive capabilities as general-purpose computers. However, task performance depends
significantly on the quality of the prompt used to steer the model, and most effective prompts
have been handcrafted by humans.

Inspired by classical program synthesis and the human approach to prompt engineering, we
propose Automatic Prompt Engineer1 (APE) for automatic instruction generation and selection. In
our method, we treat the instruction as the “program,” optimized by searching over a pool of
instruction candidates proposed by an LLM in order to maximize a chosen score function. To
evaluate the quality of the selected instruction, we evaluate the zero-shot performance of another
LLM following the selected instruction.

Extensive experiments show that our automatically generated instructions outperform the prior
LLM baseline by a large margin and achieve better or comparable performance to the instructions
generated by human annotators on 24/24 Instruction Induction tasks and 17/21 curated BIG-
Bench tasks. We conduct extensive qualitative and quantitative analyses to explore the
performance of APE. We show that APE-engineered prompts are able to improve few-shot
learning performance (by simply prepending them to standard in-context learning prompts), find
better zero-shot chain-of thought prompts, as well as steer models toward truthfulness and/or
informativeness.

Notes

Workflow.

af://n0
af://n2
af://n6

— Forward Generation Template ——

1 gave a friend an instruction and five
inputs. The friend read the instruction
and wrote an output for every one of
the inputs. Here are the input-output
pairs:

Input: [Q1] Output: [4;]
Input: [Q2] Output: [A;]

The instruction was <COMPLETE>

— Reverse Generation Template
Linstructed my friend to <INSERT>
The friend read the instruction and

wrote an output for every one of the
inputs. Here are the input-output pairs:

Input: [Q1] Output: [4;]
Input: [Q3] Output: [A;]

——__ Template for TruthfulQA ——
Professor Smith was given the
following instructions: <INSERT>

Here are the Professor’s responses:

Input: [Q1] Output: [4;]
Input: [Q3] Output: [A;]

x X

-
o Keep the high score candidates I viscard the low score candidates * Final selected prompt with highest score
LLMs as Inference Models ,—_LLMs as Scoring Models
Professor Smith was given the Instruction: write the antonym of the
following instructions: <INSERT> word. <LIKELIHOOD>
Here are the Professor’s responses: L Input: direct Output)
Demostration Start } @ @) scoring ﬁ @ Log @
Input: prove Output: disprove Proposal Probability
Input: on Output: off
o o |:> write the antonym of the word. -0.26
i .
DSOStz toNESS give the antonym of the word provided. -0.28
| =
' @ '
: [Optional] High ,S"‘or"‘ : reverse the input. -0.86
X LLMs as R pling Models C
! . X <: ! to reverse the order of the letters -1.08
J | Generate a variation of the following -
|| instruction while keeping the semantic ®
'| meaning. Similar | \yrite the opposite of the word given. -0.16
. Candiates |
Input: write the antonym of the word. 1
1| Inp) = | !
. T
;| Output: <COMPLETE> 1 list antonyms for the given word. -0.39
1 1

Algorithm 1 Automatic Prompt Engineer (APE)

2: while not converged do

3:

4: forall pinU do
5:

6: end for

7

8:

9: end while

Require: Dyin < {(Q, A)}»: training examples, f : p x D — R: score function
1: Use LLM to sample instruction proposals U < {p1, ..., pm }. (See Section 3.1)

Choose a random training subset 5uuin C Dyain-
Evaluate score on the subset 3 < f(p, Diin) (See Section 3.2)

Filter the top k% of instructions with high scores Uy C U using {51, ..., Sm }
Update instructions U <— Uy, or use LLM to resample U < resample(Uy,) (See Section 3.3)

Return instruction with the highest score p* < arg max,cu, f (0, Diain)

1. First, we use an LLM as an inference model to generate instruction candidates based on a

small set of demonstrations in the form of input-output pairs.

2. Next, we guide the search process by computing a score for each instruction under the LLM

we seek to

control.

3. Finally, we propose an iterative Monte Carlo search method where LLMs improve the best

candidates by proposing semantically similar instruction variants.

Experiments

Zero-shot performance & Few-shot in-context learning performance.

Sim Ple,

BIG-Bench

Dotaset

‘{CD . A
| o Mokt (4 pcaroe)

Somp

LLM=

nT@.hy
J p-A

Instrution, 4 €
(]orv mpt) f’z

.

2emw-shot -
Cm

Zero-shot chain-of-thought reasoning.

estimoction. by
Instuction GPT

(havon A

re, :
_;(Obes . TnstractinGPT

3

G

Zero-shut Fow-Ship

Fews-shot; / Zeo=shot petformance

Accwag

af://n16

APE R AFSRAEALEB I prompt 14,

Truthful QA

TruthfulQA B — P TFIFMIE S A, JTHEARRWINRES KA (WGPTRY) EAHEELMEME %
PeiF BRI BdE

K X EEE R A —NMERR prompt,

°
@

Truth

Info
Truth+Info
Human

* . .
s Human = Human o°,
- APE m— APE

o
3
e

Truth

Info
Truth+Info
Human

o o
° °
5 &
s o
& S
o
o
&
*eoe
o o
a 2
.
.
*eoe

°
o
=
o
o
*

Metric Value (%)
I3
2

Metric Value (%)

°
*®

% Informative (GPT-info)
s
% Informative (GPT-info)

-
o
9

o

@

o
i-i
°
00 ° 02
% True (GPT-judge) % Info (GPT-info) % True + % Info 060 065 070 075 080 085 090 095 060 065 070 075 080 085 080 095

% True (GPT-judge) % True (GPT-judge)
(a) Average performance (b) Average performance (c) %True-%Info trade-off (d) %True-%Info trade-off
Train Test Training Test

o
w

o
9

0d
% True (GPT-judge) % Info (GPT-info) % True + % Info

Figure 5: Comparison of APE and “help” (human) prompt on the Truthful QA task. (a) Percentage of
answers that were either true (% True), informative (% Info), or both (% True + % Info) on the 100
training examples. (b) Same data on the 717 test examples. (c) %True-%Info frontier computed on
training data with top 10 instructions from each metric. (d) %True-%Info frontier on the test data.

	Large Language Models Are Human-Level Prompt Engineers
	Abstract
	Notes
	Experiments

